Tuesday, February 21, 2017

Next Big Future: Graphene oxide supercapacitor commercial prototype targeted within 2 years

http://www.nextbigfuture.com/2017/02/graphene-oxide-supercapacitor.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+blogspot%2Fadvancednano+%28nextbigfuture%29&utm_content=FaceBook


Sent from my iPad

Friday, February 17, 2017

Shape Memory Alloy Generator

Friday, December 23, 2016

Hydrogen Peroxide as a new energy storage.

http://www.americanenergyindependence.com/peroxide.aspx



Hydrogen peroxide (H2O2) can store energy in the form of chemical energy, similar to hydrogen. However, H2O2 has the same problem that hydrogen has — that is, hydrogen peroxide does not exist naturally in large pools like crude oil. H2O2 is not a source of energy like oil; we can't go out and explore for it or drill for it. Hydrogen peroxide is manufactured by a process that consumes energy, and/or other chemical resources.

Hydrogen peroxide, when used to produce energy, creates only pure water and oxygen as a by-product, so it is considered a clean energy like hydrogen. However, unlike hydrogen, H2O2 exists in liquid form at room temperature, so it can be easily stored and transported. Hydrogen peroxide has been around for a long time, so there is a long history of industrial handling and storage. Scientists are familiar with hydrogen peroxide.


Recent advances in electrochemistry have demonstrated the feasibility of producing hydrogen peroxide by the electrochemical reaction of oxygen and hydrogen in a fuel cell. The new process could significantly reduce the cost of producing hydrogen peroxide and provide an opportunity to make the H2O2 from hydrogen and oxygen generated locally with renewable resources.
Patent# 6,685,818 Process for the electrochemical preparation of hydrogen peroxide - February 3, 2004

One of the problems Engineers must solve when designing a process for making hydrogen peroxide is the high loss of energy. The typical energy conversion efficiency is less than 50% because the formation of H2O2 produces heat as a by-product.