Monday, October 5, 2009

New 'green' geopolymer concrete

NOTE:  Fly ash is a byproduct of coal-fired power plants. So I am not too sure how Green this technology really is. This could just be another Red Herring like clean coal. It could be cheaper then traditional concrete, I will be investigating this further.

New 'green' geopolymer concrete delivers win-win for industry and the planet
Concrete is the most prevalent building material on the planet, and though the world would be pretty flat without it (not many tall buildings and structures), it does come at a price – around 5-8 percent of all human-generated atmospheric CO2 comes from the concrete industry. A culprit is Portland cement, the binding agent in concrete. It’s the most widely produced man-made material on earth. Production of Portland cement is currently exceeding 2.6 billion tons per year worldwide and growing at 5 percent annually. To halt these alarming pollution figures, innovative research on geopolymer concrete, along with ways of using a waste byproduct from coal-fired powerplants, is being conducted by Dr Erez Allouche, assistant professor of civil engineering at Louisiana Tech University and associate director of the Trenchless Technology Center.
A greener alternative, inorganic polymer concrete (geopolymer) fits into an emerging class of cementitious materials that utilize ‘fly ash’, one of the most abundant industrial by-products on earth, as a substitute for Portland cement.
Geopolymer concrete has a number of benefits. The first is it has the potential to substantially curb CO2 emissions. It can also produce a more durable infrastructure capable of lasting hundreds of years, instead of tens. And by utilizing the fly ash, it can conserve hundreds of thousands of acres currently used for disposal of coal combustion products, and protect our water ways from fly ash ‘contamination’, too.
In comparison to ordinary Portland cement (OPC), geopolymer concrete (GPC) has better resistance to corrosion and fire (up to 2400°F), high compressive and tensile strengths, a rapid strength gain, and lower shrinkage.
Researchers believe the geopolymer concrete's greatest appeal could like in its life cycle greenhouse gas reduction potential; as much as 90 percent when compared with OPC.
This technology, along with other important research being conducted to meet future energy needs, will be highlighted next month at Louisiana Tech Energy Systems Conference at the Technology Transfer Center in Shreveport.

Fly Ash based Geopolymer Concrete : 2 new reports from Curtin 
The geopolymer group at Curtin University of Technology, Perth, Australia (Prof. V. Rangan) has released 2 new reports on Fly Ash Based Geopolymer Concrete. They may be downloaded from our Library.
The first report: Report GC 2 is dealing with the long term properties. It has been included in the Technical Paper #17 in the Library, in addition to the previous report GC 1.
The second : Report GC 3 describes the properties of Beams and Columns. It is named Technical Paper #18 in the Library.

1 comment:

  1. you should be looking at how much pollution Concrete production produces, including energy costs.

    when you subtract externalities it reduces waste reciprocally

    also, consider this being significantly stronger, the life length of a stone like substance in comparison to a typical concrete.

    CO2 produced per sqft of cement per life expectancy of each sqft